Playing Large Games Monday, 17 February 2025

Claim: Grie 2-player game R, L E (0,1) nxn, E>0 strategy profile (x*, y*) s.t.

 $\forall i, i' \in [n], X_i^* > 0 \Rightarrow (R_y^*)_i \geqslant (R_y^*)_{i'}$

the X* is on E-BR to y*

Defr. Gives 2-player game 2, (& (0,1) nxn, & >0,

 $x^{*T} Ry^{*} > (Ry^{*})_{i} - \epsilon + i \epsilon (n)$

Strategy profile (x*, y*), x* is an &- best-response

Defin: Given 2-player game R, C & (0,1) xn, E>O,

strategy profile (x*, y*) is an E-NE if

 x^* is an ε -BR to y^* , A y^* is an ε -BR to x^* i.e., $x^{*T}Ry^*$ \geqslant $(Ry^*)_i - \varepsilon$ tie [n] $\forall y^{*T} Cx^{*} \geq (Cx^{*})_{j} - \epsilon \quad \forall j \in [r]$

Theorem: Guin 2-player game R, l & (0,1) nxn, & >0 \exists an ε -NE \hat{x} , \hat{y} s.t. 1 supp (\hat{x}) 1 < 12 $\ln n / \varepsilon^2$ k | Supp (\hat{g}) | \leq 12 m n/ϵ^2

Corollery: Given 2-Player game R.C & (0,1) xm, E >0 an E-NE can be computed in time $O(n^{24hn/\epsilon^2}poyy(n, 2, c))$ (guess supp (\hat{x}), supp (\hat{y}), (n) choices for each)

Will use Hoeff ding's inequality: Let X, ..., Xic la independent r.v. s in [0,1]. Let fe= 1 2 Xi. Thu $\Pr\left[\left|\frac{1}{k}\sum_{i}\chi_{i}-\mathbb{E}\left[\mu\right]\right|>\varepsilon\right]\leq2e^{-2\kappa\varepsilon^{2}}$

Proof of Theorem: Let (x^*, y^*) be a NE. Let $k = 12 \text{ mn}/\epsilon^2$. Let A be a multi set of k pure strategies, sampled independently from x*, & B be a multiset of k pure strategist, sampled Independently from y*. Let \hat{x} , \hat{y} be the emprical distribution of pure strategies in x*, i.e., if pre strategy i appears in A, $\hat{x}_i = x_i / k$.

Note that : $|supp(\hat{x})|$, $|supp(\hat{y})| \leq k$ supp (x) C supp (x*) supp (y*) We ned to Show: \hat{x} is ϵ -BR to \hat{y} , & \hat{y} is ϵ -BR to \hat{x} . Will show:

 $\forall c, \hat{\chi}_c > 0 \Rightarrow (R\hat{g})_c > (R\hat{g})_c - \epsilon$

We will show that \hat{x} , \hat{y} is the required ϵ - NE.

for K samples Y'... Y' Pr [] | \frac{1}{k} \frac{\x'}{\x''} - (\Ry*)_i | > \& \lambda /2] \leq 2e^{-k\x^2/2} or $Pr\left[\left|\left(k\hat{y}\right)_{i}-\left(ky^{*}\right)_{i}\right|\right]\leq2e^{-k\epsilon^{2}/2}$

Thus w.p. $1-2ne^{-k\epsilon^2/2}$, $\forall i$, $|(R\hat{y})_i-(Ry^*)_i|\leq \epsilon l_2$

Y = Rij w.p. yj

Fix it [n]. Consider r.v. Y s.t.

 $\Rightarrow (2y^*)_{i} > (2y^*)_{i'}$ Thus u.p. $1-2ne^{-\kappa \epsilon^2/2}$, $\hat{\chi}_i > 0 \Rightarrow (\hat{p}_j)_i \Rightarrow (\hat{p}_y^*)_i - \hat{\epsilon}/2$ > (Ry*);1 - 2/2

Now consider i: ki >0 => xi >0

> (Rg)i/ - E Similarly, w.g. $1-4ne^{-k\epsilon^2/2}$, $\hat{y}_i > 0 \Rightarrow (C\hat{x})_i > (C\hat{x})_{i-1} = \epsilon$. Hence, urp. 1-4ne-12, (x, y) is an E-NE. now $1-4ne^{-K\epsilon^{2}/2} = 1-4nexp(-\frac{12 \ln n}{\epsilon^{2}} \cdot \frac{\xi^{2}}{2})$

 $= 1-4n \cdot \frac{1}{n6} > 0$ Hence, $\exists \hat{x}, \hat{y}$ s.f. $|supp(\hat{x})|, |supp(\hat{y})| \leq k$ & x, g is a E-NE.

(This is known as the probabilistic method). Such a strategy is called a k-uniform Strategy, where $\forall i$, $\hat{x_i} = \frac{\lambda}{L}$, $\lambda \in \mathbb{Z}_+$

(on show: D | xt Rg - xxt Py* | ≤ ε

1) For m players w/ n pure stralegues lech, there I K-uniform strategu ŝ,,..., ŝm for the players s.t. $|\operatorname{supp}(\hat{s}_i)| \leq k$, $\mathcal{L}(\hat{s}_i) = (\hat{s}_i, \ldots, \hat{s}_m)$ is $\mathcal{L}(\hat{s}_i) = (\hat{s}_i, \ldots, \hat{s}_m)$ E-NE for E: 3m² ln m²n

in let work. K reduced to 8 lm mn